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Abstract—Carbonylation of (1R,4R)-isolimonene, catalyzed by [HPd(SnCl3)(dppf)], involves the exo- and endo-carbon�carbon
double bonds to provide a cyclopentanone containing two new stereogenic centers with d.e. of 69%. It was shown that this
diastereoselectivity arose from the two stereogenic centers of the substrate. Calculations carried out on the cyclization step show
that the metal center of the palladium–acyl species coordinates the endocyclic double bond in the endo-position exclusively. The
net charge distribution over the palladium center, the acyl carbon atom and the two carbon atoms of the C�C bond determines
the two nucleophilic attacks in this step. © 2001 Elsevier Science Ltd. All rights reserved.

Tandem reactions play an important role in the func-
tionalization of organic substrates, and their use in
carbonylation procedures appears very attractive.1 Dur-
ing our studies on the alkoxycarbonylation of various
terpenes,2 preliminary observations have shown that
(1R,4R)-isolimonene leads to a substituted cyclopen-
tanone.3 This reaction is catalyzed by palladium, and
the precursor is transformed into the active hydrido
species [Pd(H)(SnCl3)L2].3

In this work we present a full NMR study of the two
diastereoisomers 2a and 2b obtained by cyclocarbonyl-
ation of pure (1R,4R)-isolimonene 1 (Scheme 1) for
which we have assigned the stereochemistry of all the
stereogenic centers. Quantum chemical calculations

using density functional theory (DFT) have been per-
formed on the intermediate species 4 (Scheme 2),
which is assumed to be responsible for the
diastereodiscrimination. Conformational analysis of
this key intermediate 4 gives a classical trigonal
bipyramidal (TBP) species, although slightly distorted,
in which the endocyclic carbon�carbon double bond is
coordinated to the palladium center. The computed
net charge distributions in 4 (Fig. 1) direct the two
intrasphere nucleophilic attacks giving rise to cycliza-
tion. The diastereoselectivity of this cyclocarbonylation
reaction is fully governed by the two stereogenic cen-
ters (1R and 4R) initially present in isolimonene as it
does not require the presence of any chiral phosphine
ligands.

Scheme 1.
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Scheme 2.

Figure 1. Species 4.

two hydrogen atoms on C-(1) and C-(5) are in mutual
cis-positions. Moreover, these assignations reveal that
the stereoselectivity is complete on C-(1) and that
diastereoselectivity results from the methyl position on
C-(4).

If we consider the full mechanism of the carbonylation
reaction, the first step of this cyclocarbonylation results
from the coordination of the exocyclic carbon�carbon
double bond to a palladium–hydride species to give an
alkyl intermediate. It is followed by a cis-migratory CO
insertion to produce the acyl species 3.13 Then, we
propose the cyclization mechanism shown in Scheme 2
where the double bond coordinates to the palladium
center and is followed by a double internal nucleophilic
attack. b-Elimination of the hydrogen atom C-(8) of 5
restores the palladium–hydride species and gives 2a and
2b.

As limonene (with the endocyclic C�C bond in 3,4
positions) gives rise to poor diastereoselectivity, we can
consider that the two steps of hydride transfer to the
exocyclic C�C bond and the migratory CO insertion do
not provide the 69% d.e. observed here. Hence, we have
focused our attention on the intermediate 4 in which it
can be assumed that the diastereoselectivity of the
reaction is caused by the coordination of the endocyclic
carbon�carbon double bond to the palladium metal
center.

To have more insight into species 4, quantum chemical
calculations have been carried out by substituting SnCl3
with Cl and PPh3 with PH3. DFT computations have
been performed in two steps: (a) a full geometrical
optimization by the conjugate gradient method of
Fletcher,14 (b) a determination of the net charge distri-
butions including a relativistic model core potential15

on the palladium atom. The DFT calculations have
been done using the deMon package release 3.316 with
the local potential VWN17 gradient corrected, non-local
contributions of Perdew and Wang for the exchange
term18 and Perdew for the correlation term.19 The struc-
ture computed is in good agreement with known
experimental data on similar species di-m-chloro-bis[(2%-
3%-h-exo-3-allylnorborn-2-yl)palladium],20 di-m-acetato-
bis - [(2 - methylallyl - 3 - norbornyl)palladium(II)]21 and
p-allylmonothio-b-diketonatopalladium(II).22 Indeed, a
TBP geometry is found, with a C-(1)�C-(9) bond length
of 1.46 A, , and two C-(1)�Pd or C-(9)�Pd distances of
2.24 A, .

With [PdCl2(PPh3)2],4 the cyclocarbonylation of
(1R,4R)-isolimonene leads to the two cyclopentanones
2a and 2b with a conversion of 95% and a selectivity of
80%,5 the two diastereoisomers being obtained in a
ratio of 2a:2b=56:44 (d.e.=12%).6 Substitution of the
triphenylphosphine ligands by a diphosphine ligand
such as bis(diphenylphosphino)butane (dppb) or -fer-
rocene (dppf)7 give lower conversions of around 75%
and selectivities of around 50%. However, the
diastereoselectivity is greatly improved, since the d.e.
reaches 65–69%. Surprisingly, introducing (+)- or (−)-
DIOP into the palladium coordination sphere exerts no
influence on the stereochemistry of the reaction and a
2a:2b ratio of 82:18 is obtained, exactly as with dppb,
the conversion and selectivity being 77 and 43%, respec-
tively (due to isomerization of 1). Thus, it can be
concluded that the diastereoselectivity of the reaction is
governed by the substrate itself, and that a chiral
diphosphine ligand is not required.8

Attempts to separate the two diastereoisomers 2a and
2b by chromatography on a silica column resulted in
enrichment of the mixture to give 2a:2b in a 9:1 ratio.9

The 1H, 13C and DPFGSE NOE NMR
characterization10–12 allowed the structures shown in
Scheme 1 for 2a and 2b to be assigned, in which the
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The Mulliken net charge distributions have been calcu-
lated using the DF Theory.23 Clearly, a charge transfer
arises in species 4 leading to an electron excess on the
olefinic ligand and more particularly on C-(9) and a
positive charge on the carbonyl carbon, C-(2) (+0.22),
as well as on the palladium center (+0.25).23 The most
stable calculated geometry corresponds to the double
bond in an equatorial position and the carbonyl ligand
in one axial position with a 90° angle between the two
bonds. Hence, it can be assumed that the nucleophilic
attack of C-(9) on Pd and presumably, in a second step,
attack of C-(2) by C-(1) to provide 5 are dictated both
by the charge distributions and the proximity of the
atoms.

Moreover, it can be anticipated that a great decompres-
sion occurs in the whole molecule when species 5 is
formed, since the palladium�C-(9) bond is far from the
cyclopentanone ring. In addition, the metal center and
the C-(8) hydrogen are in close proximity and near to a
mutual cis- position, whereas the hydrogen atom on
C-(1) is in an exo- position, which explains why b-
hydride elimination occurs exclusively from C-(8).

We can conclude that our observations, supported by
DFT calculations, show that the stereogenic centers of
the substrate are exclusively responsible for the 69%
d.e. observed in the cyclocarbonylation reaction of
(1R,4R)-isolimonene.
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